On a Graph Calculus for Algebras of Relations
نویسندگان
چکیده
We present a sound and complete logical system for deriving inclusions between graphs from inclusions between graphs, taken as hypotheses. Graphs provide a natural tool for expressing relations and reasoning about them. Here we extend this system to a sound and complete one to cope with proofs from hypotheses. This leads to a system dealing with complementation. Other approaches using pictures for relations use as bases the theory of allegories or rewriting systems. Our formalism is more widely applicable and provides a common denominator of these approaches.
منابع مشابه
NILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملSimilarity DH-Algebras
In cite{GL}, B. Gerla and I. Leuc{s}tean introduced the notion of similarity on MV-algebra. A similarity MV-algebra is an MV-algebra endowed with a binary operation $S$ that verifies certain additional properties. Also, Chirtec{s} in cite{C}, study the notion of similarity on L ukasiewicz-Moisil algebras. In particular, strong similarity L ukasiewicz-Moisil algebras were defined. In this paper...
متن کاملAlgebraic Formalisations of Fuzzy Relations
The aim of this thesis is to develop the fuzzy relational calculus. To develop this calculus, we study four algebraic formalisations of fuzzy relations which are called fuzzy relation algebras, Zadeh categories, relation algebras and Dedekind categories, and we strive to arrive at their representation theorems. The calculus of relations has been investigated since the middle of the nineteenth c...
متن کاملThe origin of relation algebras in the development and axiomatization of the calculus of relations
The calculus of relations was created and developed in the second half of the nineteenth century by Augustus De Morgan, Charles Sanders Peirce, and Ernst Schrbder. In 1940 Alfred Tarski proposed an axiomatization for a large part of the calculus of relations. In the next decade Tarski's axiomatization led to the creation of the theory of relation algebras, and was shown to be incomplete by Roge...
متن کاملNonrepresentable Sequential Algebras
The sequential calculus of von Karger and Hoare [18] is designed for reasoning about sequential phenomena, dynamic or temporal logic, and concurrent or reactive systems. Unlike the classical calculus of relations, it has no operation for forming the converse of a relation. Sequential algebras [15] are algebras that satisfy certain equations in the sequential calculus. One standard example of a ...
متن کامل3 v 1 1 9 N ov 1 99 2 GL q ( N ) - Covariant Quantum Algebras and Covariant Differential Calculus ∗
We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrari-ness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is dissc...
متن کامل